FAOs \& their solutions for Module 4:
 Particle in a three-dimensional box

Question1: For a free particle inside a cube, the potential energy variation of the form

$$
\begin{align*}
V(x, y, z)= & \text { for } \quad 0<x<L ; 0<y<L ; 0<z<L \tag{1}\\
& \quad \infty \text { everywhere else }
\end{align*}
$$

Solve the Schrödinger equation and obtain the energy eigenvalues and eigenfunctions.
Solution1: For a free particle inside the box, the Schrödinger equation is given by

$$
\nabla^{2} \psi+\frac{2 \mu E}{\hbar^{2}} \psi=0 \quad\left\{\begin{array}{l}
0<x<L \tag{2}\\
0<y<L \\
0<z<L
\end{array}\right.
$$

The boundary condition is that ψ should vanish everywhere on the surface of the cube. We use the method of separation of variables and write $\psi=X(x) Y(y) Z(z)$ to obtain

$$
\begin{equation*}
\frac{1}{X} \frac{d^{2} X}{d x^{2}}+\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}+\frac{1}{Z} \frac{d^{2} Z}{d z^{2}}=-\frac{2 \mu E}{\hbar^{2}} \tag{3}
\end{equation*}
$$

The first term is a function of x alone, the second term of y alone, etc., so that each term has to be set equal to a constant. We write

$$
\begin{equation*}
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=-k_{x}^{2} \tag{4}
\end{equation*}
$$

and similar equations for $Y(y)$ and $Z(z)$ with

$$
\begin{equation*}
k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=\frac{2 \mu E}{\hbar^{2}} \tag{5}
\end{equation*}
$$

We have set each term equal to a negative constant; otherwise the boundary conditions cannot be satisfied. The solution of Eq. (3) is

$$
X(x)=A \sin k_{x} x+B \cos k_{x} x
$$

and since ψ has to vanish on all points on the surface $x=0$ we must have $B=0$. Further, for ψ to vanish on all points on the surface $x=L$, we must have

$$
\sin k_{x} L=0
$$

or

$$
\begin{equation*}
k_{x}=\frac{n \pi}{L} \text { with } n_{x}=1,2, \ldots \tag{6}
\end{equation*}
$$

Similarly for k_{y} and k_{z}. Using Eq.(5) we get the following expression for energy eigenvalues

$$
\begin{equation*}
E=\frac{\pi^{2} \hbar^{2}}{2 \mu L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) ; n_{x}, n_{y}, n_{z}=1,2,3, . . \tag{7}
\end{equation*}
$$

The corresponding normalized wave functions are

$$
\begin{equation*}
\psi(x, y, z)=\left(\frac{8}{L^{3}}\right)^{1 / 2} \sin \frac{n_{x} \pi}{L} x \sin \frac{n_{y} \pi}{L} y \sin \frac{n_{z} \pi}{L} z \tag{8}
\end{equation*}
$$

Question2: For a free particle inside the box, the energy eigenvalues are given by

$$
\begin{equation*}
E=\frac{\pi^{2} \hbar^{2}}{2 \mu L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) ; n_{x}, n_{y}, n_{z}=1,2,3, . . \tag{9}
\end{equation*}
$$

Calculate the density of states $g E$ where $g E d E$ represents the number of states whose energy lies between E and $E+d E$
Solution2: Let $g E d E$ represents the number of states whose energy lies between E and $E+d E$. If $N E$ represents the total number of states whose energies are less than E, then

$$
\begin{equation*}
N(E)=\int_{0}^{E} g(E) d E \tag{10}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
g(E)=\frac{d N(E)}{d E} \tag{11}
\end{equation*}
$$

Now,

$$
\begin{equation*}
n_{x}^{2}+n_{y}^{2}+n_{z}^{2}=\frac{2 \mu L^{2} E}{\pi^{2} \hbar^{2}}=R^{2} \quad \text { (say) } \tag{12}
\end{equation*}
$$

Thus $N E$ will be the number of sets of integers whose sum of square is less than R^{2}. In the n_{x}, n_{y}, n_{z} space each point corresponds to a unit volume and if we draw a sphere of radius R then the volume of the positive octant will approximately represent ${ }^{1} N E$; we have to take the positive octant because n_{x}, n_{y} and n_{z} take positive values. Thus

$$
\begin{equation*}
N(E)=2 \times \frac{1}{8} \times \frac{4 \pi}{3} R^{3}=\frac{(2 \mu)^{3 / 2} L^{3}}{3 \pi^{2} \hbar^{3}} E^{3 / 2} \tag{13}
\end{equation*}
$$

where an additional factor of 2 has been introduced as a state can be occupied by two electrons (corresponding to the two spin states). Using Eq. (9) we get

$$
\begin{equation*}
g(E)=\frac{(2 \mu)^{3 / 2} V}{2 \pi^{2} \hbar^{3}} E^{1 / 2} \tag{14}
\end{equation*}
$$

where $V\left(=L^{3}\right)$ represents the volume of the box.

[^0]Question3: In a metal (like Na, Cu etc.) electrons are assumed to be free and at absolute zero (i.e., at $T=0$) all states below a certain level $E_{F_{0}}$ are assumed to be occupied; the energy $E_{F_{0}}$ is referred to as the Fermi energy at absolute zero. Using the results of the previous problem, derive an expression for $E_{F_{0}}$.
Solution3: In a metal like Na , electrons are assumed to be free and at absolute zero (i.e., at $T=0$) all states below a certain level $E_{F_{0}}$ are assumed to be occupied. Thus

$$
\begin{align*}
N & =\int_{0}^{E_{F_{0}}} g E d E \\
& =(2 \mu)^{3 / 2} \frac{V}{2 \pi^{2} \hbar^{3}} \int_{0}^{E_{F_{0}}} E^{1 / 2} d E \tag{15}\\
& =(2 \mu)^{3 / 2} \frac{V}{3 \pi^{2} \hbar^{3}} E_{F_{0}}^{3 / 2}
\end{align*}
$$

Simple manipulations give us
$E_{F_{0}}=\frac{\hbar^{2}}{2 \mu}\left(3 \pi^{2} n\right)^{2 / 3}$
where $n(=N / V)$ represents the number of free electrons per unit volume.

Substituting the numerical values of various constants

$$
m_{e}=9.1093897 \times 10^{-31} \mathrm{~kg} \text { and } \hbar=\frac{h}{2 \pi}=1.05457266 \times 10^{-34} \mathrm{Js}
$$

we get

$$
\begin{align*}
E_{F_{0}} & \approx 5.84 \times 10^{-27} n^{2 / 3} \mathrm{erg} \tag{17}\\
& \approx 3.65 \times 10^{-15} n^{2 / 3} \mathrm{eV}
\end{align*}
$$

where n is measured in cm^{-3}. For sodium with one free electron per atom and having a density of $0.97 \mathrm{~g} / \mathrm{cm}^{3}$ we get

$$
n \approx \frac{6.023 \times 10^{23} \times 0.97}{23}=2.54 \times 10^{22} \text { electrons } / \mathrm{cm}^{3}
$$

Thus

$$
E_{F_{0}} \approx 3.2 \mathrm{eV}
$$

Now at $T \approx 300^{\circ} \mathrm{K}, k T \approx 0.025 \mathrm{eV}$. Thus $E_{F_{0}} \gg k T$

Question4: For sodium with one free electron per atom and having a density of $0.97 \mathrm{~g} / \mathrm{cm}^{3}$ calculate the value of $E_{F_{0}}$ and show that at room temperatures ($T \approx 300^{\circ} \mathrm{K}$), the electron gas is almost completely degenerate i.e., $E_{F_{0}} \gg k T$.
Solution4: For copper we assume one free electron per atom. Its density is about $8.94 \mathrm{~g} / \mathrm{cm}^{3}$ and its atomic mass is 63.5. Thus
$n \approx \frac{6.023 \times 10^{23} \times 8.94}{63.5}=8.48 \times 10^{22}$ electrons $/ \mathrm{cm}^{3}$
Using the formula derived above we get $E_{F_{0}} \approx 7.0 \mathrm{eV}$

[^0]: ${ }^{1}$ If the reader finds it difficult to understand he may first try to make the corresponding two-dimensional calculations in which one is interested in finding the number of sets of integers such that $n_{x}{ }^{2}+n_{y}{ }^{2}<R^{2}$. If one takes a graph paper then each corner corresponds to a set of integers and each point can be associated with a unit area. Thus the number of sets of integers would be $\pi R^{2} / 4$ where the factor $1 / 4$ is because of the fact that we are interested only in the positive quadrant.

